Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621976

RESUMO

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Assuntos
Alcaloides de Berberina , Hipóxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiologia , Caspase 3 , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Trifosfato de Adenosina/farmacologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais
2.
Cancer Biol Ther ; 25(1): 2334463, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38569536

RESUMO

Neurensin-2 (NRSN2) performs a pro-carcinogenic function in multiple cancers. However, the function of NRSN2 in HPV-infected laryngeal carcinoma (LC) remains unclear. HPV transfection was performed in LC cells. The mRNA and protein levels were monitored using RT-qPCR, immunoblotting, and IF. Cell viability and proliferation were found using the CCK-8 assay and Edu staining. Cell invasion, migration, and apoptosis were probed using the Transwell, wound healing, and flow cytometry, respectively. The autophagosome was observed using TEM. NRSN2 was overexpressed in HPV-transfected LC cells. Inhibition of NRSN2 restrained the autophagy and malignant behavior of HPV-transfected LC cells. Meanwhile, the inhibition of AMPK/ULK1 pathway limited the increased autophagy of HPV-transfected LC cells caused by NRSN2 overexpression. Furthermore, NRSN2 knockdown inhibits autophagy by suppressing AMPK/ULK1 pathway, thereby restraining the malignant behavior of HPV-transfected LC cells. Our research confirmed that HPV transfection increased the autophagy and malignant behavior of LC cells by regulating the NRSN2-mediated activation of the AMPK/ULK1 pathway, offering a new target for cure of LC.


Assuntos
Carcinoma , Infecções por Papillomavirus , Humanos , Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular
3.
Int J Biol Sci ; 20(6): 2323-2338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617533

RESUMO

Chronic atrophic gastritis (CAG) is a complex disease characterized by atrophy and inflammation in gastric mucosal tissue, especially with high expression of interleukins. However, the interaction and mechanisms between interleukins and gastric mucosal epithelial cells in CAG remain largely elusive. Here, we elucidate that IL-33 stands out as the predominant inflammatory factor in CAG, and its expression is induced by H. pylori and MNNG through the ROS-STAT3 signaling pathway. Furthermore, our findings reveal that the IL-33/ST2 axis is intricately involved in the progression of CAG. Utilizing phosphoproteomics mass spectrometry, we demonstrate that IL-33 enhances autophagy in gastric epithelial cells through the phosphorylation of AMPK-ULK1 axis. Notably, inhibiting autophagy alleviates CAG severity, while augmentation of autophagy exacerbates the disease. Additionally, ROS scavenging emerges as a promising strategy to ameliorate CAG by reducing IL-33 expression and inhibiting autophagy. Intriguingly, IL-33 stimulation promotes GKN1 degradation through the autolysosomal pathway. Clinically, the combined measurement of IL-33 and GKN1 in serum shows potential as diagnostic markers. Our findings unveil an IL-33-AMPK-ULK1 regulatory mechanism governing GKN1 protein stability in CAG, presenting potential therapeutic targets for its treatment.


Assuntos
Gastrite Atrófica , Helicobacter pylori , Hormônios Peptídicos , Humanos , Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Mucosa Gástrica , Interleucina-33 , Peptídeos e Proteínas de Sinalização Intracelular , Espécies Reativas de Oxigênio
4.
Transl Vis Sci Technol ; 13(3): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517447

RESUMO

Purpose: The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods: The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results: Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions: Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance: By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.


Assuntos
Retinopatia Diabética , Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Glucose/toxicidade , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos
5.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38325289

RESUMO

The mineralocorticoid receptor (MR) is a transcription factor for genes mediating diverse, cell-specific functions, including trophic effects as well as promoting fluid/electrolyte homeostasis. It was reported that in intercalated cells, phosphorylation of the MR at serine 843 (S843) by Unc-51-like kinase (ULK1) inhibits MR activation and that phosphorylation of ULK1 by mechanistic target of rapamycin (mTOR) inactivates ULK1, and thereby prevents MR inactivation. We extended these findings with studies in M1 mouse cortical collecting duct cells stably expressing the rat MR and a reporter gene. Pharmacological inhibition of ULK1 dose-dependently increased ligand-induced MR transactivation, while ULK1 activation had no effect. Pharmacological inhibition of mTOR and CRISPR/gRNA gene knockdown of rapamycin-sensitive adapter protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) decreased phosphorylated ULK1 and ligand-induced activation of the MR reporter gene, as well as transcription of endogenous MR-target genes. As predicted, ULK1 inhibition had no effect on aldosterone-mediated transcription in M1 cells with the mutated MR-S843A (alanine cannot be phosphorylated). In contrast, mTOR inhibition dose-dependently decreased transcription in the MR-S843A cells, though not as completely as in cells with the wild-type MR-S843. mTOR, Raptor, and Rictor coprecipitated with the MR and addition of aldosterone increased their phosphorylated, active state. These results suggest that mTOR significantly regulates MR activity in at least 2 ways: by suppressing MR inactivation by ULK1, and by a yet ill-defined mechanism that involves direct association with MR. They also provide new insights into the diverse functions of ULK1 and mTOR, 2 key enzymes that monitor the cell's energy status.


Assuntos
Aldosterona , Receptores de Mineralocorticoides , Animais , Camundongos , Ratos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Ligantes , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Proteína Regulatória Associada a mTOR , RNA Guia de Sistemas CRISPR-Cas , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
6.
Cell Death Dis ; 15(1): 97, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286802

RESUMO

There is a pressing need for innovative therapeutic strategies for patients with epithelial ovarian cancer (EOC). Previous studies have shown that UNC-51-like kinase 1 (ULK1), a serine/threonine kinase, is crucial in regulating cellular autophagy and mitophagy across various tumor types. However, the clinical implications, biological functions, and potential mechanisms of ULK1 in EOC remain poorly understood. This study demonstrates that ULK1 expression is upregulated in EOC tissue samples and EOC cell lines, with increased ULK1 expression correlating with poor prognosis. Functionally, overexpressed ULK1 enhances the proliferation and migration abilities of EOC cells both in vitro and in vivo. Mechanistically, ULK1 was identified as an m6A target of WTAP. WTAP-mediated m6A modification of ULK1 enhanced its mRNA stability in an IGF2BP3-dependent manner, leading to elevated ULK1 expression and enhanced mitophagy in EOC. In summary, our research reveals that the WTAP/IGF2BP3-ULK1 axis significantly influences protective mitophagy in EOC, contributing to its progression. Therefore, the regulatory mechanisms and biological function of ULK1 identify it as a potential molecular target for therapeutic intervention in EOC.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Mitofagia , Neoplasias Ovarianas , Feminino , Humanos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitofagia/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/metabolismo
7.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203804

RESUMO

Millions of diabetic patients suffer from cardiovascular complications. One of the earliest signs of diabetic complications in the heart is diastolic dysfunction. Regular exercise is a highly effective preventive/therapeutic intervention against diastolic dysfunction in diabetes, but the underlying mechanism(s) remain poorly understood. Studies have shown that the accumulation of damaged or dysfunctional mitochondria in the myocardium is at the center of this pathology. Here, we employed a mouse model of diabetes to test the hypothesis that endurance exercise training mitigates diastolic dysfunction by promoting cardiac mitophagy (the clearance of mitochondria via autophagy) via S555 phosphorylation of Ulk1. High-fat diet (HFD) feeding and streptozotocin (STZ) injection in mice led to reduced endurance capacity, impaired diastolic function, increased myocardial oxidative stress, and compromised mitochondrial structure and function, which were all ameliorated by 6 weeks of voluntary wheel running. Using CRISPR/Cas9-mediated gene editing, we generated non-phosphorylatable Ulk1 (S555A) mutant mice and showed the requirement of p-Ulk1at S555 for exercise-induced mitophagy in the myocardium. However, diabetic Ulk1 (S555A) mice retained the benefits of exercise intervention. We conclude that endurance exercise training mitigates diabetes-induced diastolic dysfunction independent of Ulk1 phosphorylation at S555.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Diabetes Mellitus Experimental , Condicionamento Físico Animal , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Terapia por Exercício , Atividade Motora , Fosforilação , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Diástole
8.
Oncogene ; 43(11): 821-836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280941

RESUMO

Triple-negative breast cancer (TNBC) cells are in a more hypoxic and starved state than non-TNBC cells, which makes TNBC cells always maintain high autophagy levels. Emerging evidence has demonstrated that circular RNAs (circRNAs) are involved in the progress of tumorigenesis. However, the regulation and functions of autophagy-induced circRNAs in TNBC remain unclear. In our study, autophagy-responsive circRNA candidates in TNBC cells under amino acid starved were identified by RNA sequencing. The results showed that circEGFR expression was significantly upregulated in autophagic cells. Knockdown of circEGFR inhibited autophagy in TNBC cells, and circEGFR derived from exosomes induced autophagy in recipient cells in the tumor microenvironment. In vitro and in vivo functional assays identified circEGFR as an oncogenic circRNA in TNBC. Clinically, circEGFR was significantly upregulated in TNBC and was positively associated with lymph node metastasis. CircEGFR in plasma-derived exosomes was upregulated in breast cancer patients compared with healthy people. Mechanistically, circEGFR facilitated the translocation of Annexin A2 (ANXA2) toward the plasma membrane in TNBC cells, which led to the release of Transcription Factor EB (a transcription factor of autophagy-related proteins, TFEB) from ANXA2-TFEB complex, causing nuclear translocation of TFEB, thereby promoting autophagy in TNBC cells. Meanwhile, circEGFR acted as ceRNA by directly binding to miR-224-5p and inhibited the expression of miR-224-5p, which weakened the suppressive role of miR-224-5p/ATG13/ULK1 axis on autophagy. Overall, our study demonstrates the key role of circEGFR in autophagy, malignant progression, and metastasis of TNBC. These indicate circEGFR is a potential diagnosis biomarker and therapeutic target for TNBC.


Assuntos
Proteínas Relacionadas à Autofagia , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/patologia , Retroalimentação , Proliferação de Células/genética , Linhagem Celular Tumoral , Autofagia/genética , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
9.
Placenta ; 145: 27-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039841

RESUMO

Gestational diabetes mellitus (GDM) is a common pregnancy complication with a high incidence in women; however, its pathophysiology remains unknown. Our previous study suggested that the circCHD2/miR-33b-3p/ULK1 axis may be involved in GDM pathogenesis. However, the mechanism through which circCHD2 regulates GDM development requires further investigation. We found that high-glucose (HG, 25 mmol/L) significantly induced the expression of circCHD2, increased autophagy and apoptosis, and decreased cell viability in human placental trophoblast HTR-8/SVneo cells. In contrast, the downregulation of circCHD2 significantly attenuated the effects of HG on HTR-8/SVneo cells. MiR-33b-3p downregulated in the placenta of GDM patients was reduced by HG and detected as a target of circCHD2 using bioinformatics analysis, a dual-luciferase reporter assay, and qRT-PCR assay. Further studies showed that the inhibition of miR-33b-3p significantly blocked the effects of circCHD2 downregulation on cell viability, apoptosis, and autophagy in HG-treated HTR-8/SVneo cells. ULK1 is a target of miR-33b-3p, based on bioinformatics analysis, a dual-luciferase reporter assay, qRT-PCR assay, and Western blot analysis. Compared to miR-33b-3p, ULK1 is upregulated in the placenta of GDM patients. ULK1 overexpression notably blocked the effects of miR-33b-3p mimics on cell viability, apoptosis, and autophagy in HG-treated HTR-8/SVneo cells. These findings suggested that circCHD2 acts as an autophagy promoter via the miR-33b-3p/ULK1 axis to induce apoptosis in HTR-8/SVneo cells, suggesting that circCHD2 is a potential diagnostic and therapeutic target for GDM.


Assuntos
Diabetes Gestacional , MicroRNAs , RNA Circular , Feminino , Humanos , Gravidez , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proliferação de Células/fisiologia , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
10.
Cancer Gene Ther ; 31(3): 410-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135696

RESUMO

A sphingolipid metabolite regulator, sphingosine kinase 1 (SPHK1), plays a critical role in the development of colorectal cancer (CRC). Studies have demonstrated that invasion and metastasis of CRC are promoted by SPHK1-driven autophagy. However, the exact mechanism of SPHK1 drives autophagy to promote tumor progression remains unclear. Here, immunohistochemical detection showed the expression of SPHK1 and tumor necrosis factor receptor-associated factor-6 (TRAF6) in human CRC tissues was stronger than in adjacent normal tissues, they were both associated with distance metastasis. It was discovered that knockdown of SPHK1 reduced the expression of TRAF6, inhibited autophagy, and inhibited the growth and metastasis of CRC cells in vitro. Moreover, the effects of SPHK1-downregulating were reversed by overexpression of TRAF6 in CRC cells transfected by double-gene. Overexpression of SPHK1 and TRAF6 promoted the expression of autophagy protein LC3 and Vimentin, while downregulated the expression of autophagy protein P62 and E-cadherin. The expression of autophagy-related ubiquitination protein ULK1 and Ubiquitin protein were significantly upregulated in TRAF6-overexpressed CRC cells. In addition, autophagy inhibitor 3-methyladenine (3MA) significantly inhibited the metastasis-promoting effect of SPHK1 and TRAF6, suppressed the expression of LC3 and Vimentin, and promoted the expression of P62 and E-cadherin, in CRC cells. Immunofluorescence staining showed SPHK1 and TRAF6 were co-localized in HT29 CRC cell membrane and cytoplasm. Immunoprecipitation detection showed SPHK1 was efficiently combined with the endogenous TRAF6, and the interaction was also detected reciprocally. Additionally, proteasome inhibitor MG132 treatment upregulated the expression of TRAF6 and the level of Ubiquitin protein, in SPHK1-downregulating CRC cells. These results reveal that SPHK1 potentiates CRC progression and metastasis via regulating autophagy mediated by TRAF6-induced ULK1 ubiquitination. SPHK1-TRAF6-ULK1 signaling axis is critical to the progression of CRC and provides a new strategy for the therapeutic control of CRC.


Assuntos
Neoplasias Colorretais , Fosfotransferases (Aceptor do Grupo Álcool) , Fator 6 Associado a Receptor de TNF , Humanos , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo , Vimentina
11.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 139-245, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015515

RESUMO

The research aims to explore the protective effects of ghrelin and its underlying molecular mechanisms in an H9C2 hypoxia/reoxygenation model. H9C2 cells were transfected with ghrelin overexpression lentiviral vector. The hypoxia/reoxygenation H9C2 model was constructed. The expression of ghrelin was analyzed by qRT-PCR and Western Blotting. CCK8, flow cytometry and TUNEL assay were used to analyze the impact of ghrelin on the survival and apoptosis of H9C2 injured by hypoxia/reoxygenation. The levels of autophagy-related proteins in H9C2 cells were evaluated through Western blotting. ELISA was utilized to assess how ghrelin affects the inflammatory response triggered by hypoxia/reoxygenation. Western blotting was utilized to investigate the regulatory role of ghrelin on the AMPK/ULK1 pathway. Additionally, the AMPK inhibitor Compound C was introduced to delve further into the associated mechanism. Hypoxia/reoxygenation injury decreased the expression of ghrelin. Transfection of ghrelin overexpression lentiviral vector significantly increased the expression of ghrelin in H9C2 cells. Ghrelin overexpression can significantly promote cell survival, reduce apoptosis, activate AMPK, ULK1 and AMBRA1, promote autophagy, increase the expression of LC3BII/LC3BI and Beclin-1, reduce the expression of P62, and reduce inflammatory response. Ghrelin inhibited apoptosis of H9C2 caused by hypoxia/reoxygenation and reduced inflammatory response, which mechanism is related to activation of AMPK/ULK1 pathway and autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Grelina , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Grelina/farmacologia , Hipóxia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Ratos
12.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894732

RESUMO

The ß-thalassemias are hereditary monogenic diseases characterized by a low or absent production of adult hemoglobin and excess in the content of α-globin. This excess is cytotoxic for the erythroid cells and responsible for the ß-thalassemia-associated ineffective erythropoiesis. Therefore, the decrease in excess α-globin is a relevant clinical effect for these patients and can be realized through the induction of fetal hemoglobin, autophagy, or both. The in vivo effects of sirolimus (rapamycin) and analogs on the induction of fetal hemoglobin (HbF) are of key importance for therapeutic protocols in a variety of hemoglobinopathies, including ß-thalassemias. In this research communication, we report data showing that a decrease in autophagy-associated p62 protein, increased expression of ULK-1, and reduction in excess α-globin are occurring in erythroid precursors (ErPCs) stimulated in vitro with low dosages of sirolimus. In addition, increased ULK-1 mRNA content and a decrease in α-globin content were found in ErPCs isolated from ß-thalassemia patients recruited for the NCT03877809 clinical trial and treated with 0.5-2 mg/day sirolimus. Our data support the concept that autophagy, ULK1 expression, and α-globin chain reduction should be considered important endpoints in sirolimus-based clinical trials for ß-thalassemias.


Assuntos
Talassemia beta , Adulto , Humanos , Talassemia beta/tratamento farmacológico , Talassemia beta/genética , Talassemia beta/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Hemoglobina Fetal , alfa-Globinas/genética , alfa-Globinas/metabolismo , RNA Mensageiro/genética , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
13.
EMBO Rep ; 24(11): e56850, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37846507

RESUMO

The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Paxilina/metabolismo , Mecanotransdução Celular , Fosforilação , Movimento Celular , Serina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
J Diabetes Investig ; 14(12): 1344-1355, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688345

RESUMO

BACKGROUND: Umbilical cord-derived mesenchymal stem cells (UCMSCs) could alleviate diabetes-induced injury. Hence, this investigation aimed to explore the role and mechanism of UCMSCs-derived exosomal circHIPK3 (exo-circHIPK3) in diabetes mellitus (DM). METHODS: HFF-1 cells were cultured in high glucose (HG) medium or normal medium, and treated with UCMSCs-derived exo-circHIPK3 or miR-20b-5p mimics or Unc-51-like autophagy activating kinase 1 (ULK1) overexpression vector. The surface markers of UCMSCs were analyzed using a flow cytometer. The differentiation potential of UCMSCs was evaluated using oil red O staining, alizarin red staining and alkaline phosphatase (ALP) staining. Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The miRNA expressions were analyzed by reverse transcription-quantitative polymerase chain reaction (qRT-PCR). Protein levels were quantified by western blot. An immunofluorescence staining was used for observing LC3 expression. The interaction between miR-20b-5p and circHIPK3, and between miR-20b-5b and ULK1 were identified by a RNA immunoprecipitation (RIP) assay and a luciferase reporter assay. RESULTS: Up-regulation of circHIPK3 was found in UCMSCs-derived exosomes. Exo-circHIPK3 decreased the miR-20b-5p level while increasing the contents of ULK1 and autophagy-related gene 13 (Atg13) in HG-induced fibroblasts. In addition, exo-circHIPK3 activated HG-induced fibroblast autophagy and proliferation. Overexpressed miR-20b-5p promoted fibroblast injury by inhibiting cell autophagy via the ULK1/Atg13 axis in HG conditions of high glucose. Moreover, exo-circHIPK3 enhanced autophagy and cell viability in HG-induced fibroblasts through the miR-20b-5p/ULK1/Atg13 axis. CONCLUSION: UCMSCs-derived exosomal circHIPK3 promoted cell autophagy and proliferation and accelerated the fibroblast injury repair by the miR-20b-5p/ULK1/Atg13 axis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição , Autofagia , Fibroblastos , Glucose , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Cell Death Dis ; 14(8): 540, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607937

RESUMO

Accumulating evidence has shown that the quality of proteins must be tightly monitored and controlled to maintain cellular proteostasis. Misfolded proteins and protein aggregates are targeted for degradation through the ubiquitin proteasome (UPS) and autophagy-lysosome systems. The ubiquitination and deubiquitinating enzymes (DUBs) have been reported to play pivotal roles in the regulation of the UPS system. However, the function of DUBs in the regulation of autophagy remain to be elucidated. In this study, we found that knockdown of Leon/USP5 caused a marked increase in the formation of autophagosomes and autophagic flux under well-fed conditions. Genetic analysis revealed that overexpression of Leon suppressed Atg1-induced cell death in Drosophila. Immunoblotting assays further showed a strong interaction between Leon/USP5 and the autophagy initiating kinase Atg1/ULK1. Depletion of Leon/USP5 led to increased levels of Atg1/ULK1. Our findings indicate that Leon/USP5 is an autophagic DUB that interacts with Atg1/ULK1, negatively regulating the autophagic process.


Assuntos
Autofagia , Proteínas de Drosophila , Animais , Autofagia/genética , Autofagossomos , Morte Celular , Drosophila , Lisossomos , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Enzimas Desubiquitinantes , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas de Drosophila/genética , Proteases Específicas de Ubiquitina/genética
16.
Proc Natl Acad Sci U S A ; 120(29): e2301002120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428930

RESUMO

Autophagy is a major means for the elimination of protein inclusions in neurons in neurodegenerative diseases such as Parkinson's disease (PD). Yet, the mechanism of autophagy in the other brain cell type, glia, is less well characterized and remains largely unknown. Here, we present evidence that the PD risk factor, Cyclin-G-associated kinase (GAK)/Drosophila homolog Auxilin (dAux), is a component in glial autophagy. The lack of GAK/dAux increases the autophagosome number and size in adult fly glia and mouse microglia, and generally up-regulates levels of components in the initiation and PI3K class III complexes. GAK/dAux interacts with the master initiation regulator UNC-51like autophagy activating kinase 1/Atg1 via its uncoating domain and regulates the trafficking of Atg1 and Atg9 to autophagosomes, hence controlling the onset of glial autophagy. On the other hand, lack of GAK/dAux impairs the autophagic flux and blocks substrate degradation, suggesting that GAK/dAux might play additional roles. Importantly, dAux contributes to PD-like symptoms including dopaminergic neurodegeneration and locomotor function in flies. Our findings identify an autophagy factor in glia; considering the pivotal role of glia under pathological conditions, targeting glial autophagy is potentially a therapeutic strategy for PD.


Assuntos
Proteínas de Drosophila , Doença de Parkinson , Animais , Camundongos , Drosophila/metabolismo , Auxilinas/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Ciclinas/metabolismo , Neuroglia/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo
17.
Tissue Cell ; 84: 102160, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482027

RESUMO

One of the main causes of cancer mortality in the world is pancreatic cancer. Therapies based on stem cells are currently thought to be a hopeful option in the treatment of cancer. Herein, we intend to evaluate the antitumor effects of secretome of human amniotic mesenchymal stromal cells (hAMSCs) on autophagy and cell death induction in Panc1 pancreatic cancer cells. We adopted a co-culture system using Transwell 6-well plates and after 72 h, hAMSCs-treated Panc1 cancer cells were analyzed using quantitative real time PCR (qRT-PCR), flow cytometry, western blot, MTT assay, and DAPI staining. Based on our results, the microtubule-associated protein 1 light chain 3 (LC3) conversion from LC3-I to LC3-II and the upregulation of autophagy-related proteins expression including Beclin1, Atg7, and Atg12 were detected in hAMSCs-treated Panc1 cells. Furthermore, the level of phosphorylated proteins such as Unc-51-like kinase 1 (ULK1), AMP activated protein kinase (AMPK), AKT, and mTOR changed. Apoptotic cell death was also induced via the elevation of Bax and Caspase 3 expression and inhibition of Bcl-2. Our findings showed that secretome of hAMSCs induces autophagy and cell death in Panc1 cancer cells. However, more experiments will be needed to identify more details about the associated mechanisms.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Regulação para Cima , Regulação para Baixo , Secretoma , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Apoptose , Autofagia/genética , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular Tumoral , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
18.
Sci Adv ; 9(22): eadg4993, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267363

RESUMO

Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases , Lisina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lipídeos
19.
EMBO J ; 42(14): e113349, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306101

RESUMO

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosforilação , Proteína Sequestossoma-1/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
20.
Blood ; 142(10): 918-932, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37339583

RESUMO

Most cells can eliminate unstable or misfolded proteins through quality control mechanisms. In the inherited red blood cell disorder ß-thalassemia, mutations in the ß-globin gene (HBB) lead to a reduction in the corresponding protein and the accumulation of cytotoxic free α-globin, which causes maturation arrest and apoptosis of erythroid precursors and reductions in the lifespan of circulating red blood cells. We showed previously that excess α-globin is eliminated by Unc-51-like autophagy activating kinase 1 (ULK1)-dependent autophagy and that stimulating this pathway by systemic mammalian target of rapamycin complex 1 (mTORC1) inhibition alleviates ß-thalassemia pathologies. We show here that disrupting the bicistronic microRNA gene miR-144/451 alleviates ß-thalassemia by reducing mTORC1 activity and stimulating ULK1-mediated autophagy of free α-globin through 2 mechanisms. Loss of miR-451 upregulated its target messenger RNA, Cab39, which encodes a cofactor for LKB1, a serine-threonine kinase that phosphorylates and activates the central metabolic sensor adenosine monophosphate-activated protein kinase (AMPK). The resultant enhancement of LKB1 activity stimulated AMPK and its downstream effects, including repression of mTORC1 and direct activation of ULK1. In addition, loss of miR-144/451 inhibited the expression of erythroblast transferrin receptor 1, causing intracellular iron restriction, which has been shown to inhibit mTORC1, reduce free α-globin precipitates, and improve hematological indices in ß-thalassemia. The beneficial effects of miR-144/451 loss in ß-thalassemia were inhibited by the disruption of Cab39 or Ulk1 genes. Together, our findings link the severity of ß-thalassemia to a highly expressed erythroid microRNA locus and a fundamental, metabolically regulated protein quality control pathway that is amenable to therapeutic manipulation.


Assuntos
MicroRNAs , Talassemia beta , Humanos , Talassemia beta/terapia , Proteínas Quinases Ativadas por AMP/metabolismo , alfa-Globinas , Autofagia/genética , MicroRNAs/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...